Edge Domination Number of Jump Graph

M.Karthikeyan *, A.Elumalai
Research and Development Centre, Bharathiar University, Coimbatore-641046
Department of Mathematics, Agni College of Technology, Chennai-600130
e-mail: kmkmkarthikeyan@gmail.com
Department of Mathematics, Valliammai Engineering College, Chennai-603203
e-mail:aelu@yahoo.com

Abstract

A Set $D \subseteq E[J(G]$ is dominating set of jump graph, if every edge not in D is adjacent to a edge in D . The domination number of the jump graph is the minimum cardinality of dominating set of jump graph J(G).We also study the graph theoretic properties of $\gamma^{\prime}[J(G)]$ and its exact values for some standard graphs. The relation between $\gamma^{\prime}[J(G)]$ with other parameter are also investigated.

Keywords: Edge Domination Number, Jump Graph, Diameter.

1. INTRODUCTION

Let $G(\mathrm{p}, \mathrm{q})$ be a graph with $\mathrm{p}=|V|$ and $\mathrm{q}=|E|$ denote the number of vertices and edges of a graph G respectively. All the graphs considered here are finite, non-trivial, undirected and connected without loops or multiple edges.
In general the degree of vertex v in a graph G is the number of edges of G incident with v and it is denoted by degv. The maximum(minimum) degree among the vertices of G is denoted by $\Delta(G)(\delta(G))$. We denote the minimum number of edges in edge cover of G (i.e., edge cover number) by $\alpha_{1}(G)$ and the minimum number of edges in independent set of edges of $G($ i.e., edge independent set) by $\beta_{1}(G)$. The subgraph induced by $X \subseteq V$ is denoted by $\langle X\rangle$. A vertex of degree one is called an pendent vertex. A vertex adjacent to pendent vertex is called the support vertex. The maximum $d(u, v)$ for all u in G is eccentricity of v and the maximum eccentricity is the diameter $\operatorname{diam}(G)$. As usual P_{n}, C_{n} and K_{n} are respectively, the path, cycle and complete graph of order $\mathrm{n}, \mathrm{K}_{\mathrm{r}, \mathrm{s}}$ is the complete bipartite graph with two partite sets containing r and s vertices. Any
undefined term or notation in this paper can be found in Harary [2] [4].

2. PRELIMINARY NOTES

The line graph $L(G)$ of G has the edges of G as its vertices which are adjacent in G. We call the complement of line graph $L(G)$ as the jump graph $J(G)$ of G, found in [1]. The jump graph $J(G)$ of a graph G is the graph defined on $E(G)$ and in which two vertices are adjacent if and only if they are not adjacent in G. Since both $L(G)$ and $J(G)$ are defined on the edge set of a graph G, it follows that isolated vertices of G (If G has) play no role in line graph and jump graph transformation. We assume that the graph G under consideration is nonempty and has no isolated vertices [1].

Definition 2.1: We now define the edge domination number of jump graph. Let $G=(V, E)$ be a graph. A set $D \subseteq E$ is said to be a dominating set, if every edge not in D is adjacent to a edge in D. The edge domination number of G, denoted by $\gamma^{1}(G)$, is the minimum cardinality of a dominating set. Analogously, a set $D \subseteq E[J(G)]$
is said to be dominating set of $\mathrm{J}(\mathrm{G})$, if every edge not in D is adjacent to a edge in D . The domination number of jump graph, denoted by $\gamma^{1}[J(G)]$, is the minimum cardinality of a dominating set in $J(G)$. For any graph G with $p \leq 4$,the jump graph $\mathrm{J}(\mathrm{G})$ of G, I s disconnected since we study only the connected jump graph, we choose $p>4$ [3]

2. MAIN RESULTS

Theorem 3. 1: 1. For any path P_{p}, with $\mathrm{p} \geq$
5, $\gamma^{\prime}\left[J\left(P_{p}\right)\right]=2$
2. For any Cycle C_{p}, with $\mathrm{p} \geq 5, \gamma^{\prime}\left[J\left(C_{p}\right)\right]=2$
3. For any Complete graph K_{p} with $\mathrm{p} \geq$ $5, \gamma^{\prime}\left[J\left(K_{p}\right)\right]=3$
4. For any complete bipartite graph $K_{m n}$.
$\gamma^{\prime}\left[J\left(K_{m, n}\right)\right]=\left\{\begin{array}{c}2 \text { for } k_{2, n} \text { where } n>2 \\ 3 \text { for } k_{m, n} \text { where } m, n \geq 3\end{array}\right.$
5. For any wheel $W_{p} \quad \gamma^{\prime}\left[J\left(W_{p}\right)\right]=\left\{\begin{array}{c}3 \text { for } p=5,6 \\ 2 \text { for } p \geq 7\end{array}\right.$

Theorem 3.2: For any connected graph G $\gamma^{\prime}[J(G)]$ ≥ 2
Proof of the theorem is obvious
The following theorem gives the relationship between edge domination number of a graph with its edge domination number of a jump graph

Theorem 3.3: For any connected graph G with diameter, $\operatorname{diam}(G) \geq 2, \gamma^{\prime}[J(G)] \geq 2$
Proof: Let uv be a path of maximum distance in G. Then $\mathrm{d}(\mathrm{u}, \mathrm{v})=\operatorname{diam}(\mathrm{G})$

We can prove the theorem with the following cases
Case1: For $\operatorname{diam}(G)=2$, Choose a vertex v_{1} of eccentricity 2 with maximum degree among others. Let $\mathrm{E}_{1}=\left\{e_{1}^{1}, e_{2}^{1} \ldots\right\}$ corresponding to the elements of $\left\{v_{1}, v_{2}, \ldots\right\}$ forming a dominating set in jump graph $\mathrm{J}(\mathrm{G})$.Every edge $\mathrm{v} \notin E_{1}$ is adjacent to a edge in E_{1}. Hence E_{1} is a minimum dominating set . So the edge domination number of the jump graph is $\gamma^{\prime}[J(G)]>2$.
Case2: For diam(G)>2,let v_{1} be any vertex adjacent to v and v_{2} be any vertex adjacent to u . Let $\left\{\mathrm{v}_{1} \mathrm{v}_{2}\right\}$ $\subseteq \mathrm{V}(\mathrm{G})$ form a corresponding edge set $\left\{e_{1}^{1}, e_{2}^{1}\right\} \subseteq$ $\mathrm{E}(\mathrm{J}(\mathrm{G}))$. These two edges form a dominating set in jump graph. Since these edges $\left\{e_{1}^{1}, e_{2}^{1}\right\}$ are adjacent to all other edges of $E(J(G))$,it follows that $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}\right\}$
becomes a minimum dominating set. Hence $\gamma^{\prime}[J(G)]=2$.
In view of above cases, we can conclude that for any connected graph $G \gamma^{\prime}[J(G)] \geq 2$

Theorem 3.4: For any tree T with diameter greater than $3, \gamma^{\prime}[J(T)]=n$
Proof: If the diameter is less than or equal to 3, then the jump graph will be disconnected.
Let uv be a path of maximum length in a tree T where diameter is greater than 3.Let e_{i} be the pendent vertex adjacent to u and e_{k} be the pendent edge adjacent to v. The edge set $e_{i}, i=1,2,3, \ldots n$ of $\mathrm{J}(\mathrm{T})$ corresponding to the vertices in T will form the dominating set in $\mathrm{J}(\mathrm{T})$.Since all the other edges of $E[J(T)]$ are adjacent with $e_{i} i=1,2,3 \ldots n$ it form a minimum dominating set. Hence $\gamma^{\prime}[J(T)]=\mathrm{n}$

Theorem 3.5: For any connected (p, q) graph G, $\gamma^{1}[J(G)] \leq p-\Delta(G)$ where $\quad \Delta(G)$ is the maximum degree of G.
Proof: Let $E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be the set of edges in G and let $E_{1}=E-e_{1}$ where e_{1} is one of the edge with maximum degree. By definition of jump graph, $\mathrm{E}(\mathrm{G})=\mathrm{V}[\mathrm{J}(\mathrm{G})]$. Consider $I=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ as the set of vertices adjacent to e_{1} in G. Let $H \subseteq E(J(G))$ be the set of edges of $\mathrm{J}(\mathrm{G})$ such that $H \subseteq V-I$. Then H itself forms a minimally dominating set. Therefore $\gamma^{1}[J(G)] \leq|V|-|I|$.Hence $\gamma^{1}[J(G)] \leq p-\Delta(G)$

Theorem 3.6: For any connected (p, q) graph G, $2 \leq \gamma^{1}[J(G)] \leq\lfloor p / 2\rfloor$

Proof: An edge $\left\{e_{i}\right\}$ is any connected graph G is adjacent to atleast one more edge in G. In jump graph, the vertex $\left\{e_{1}^{\mid}\right\}$corresponding to $\left\{v_{i}\right\}$ is non adjacent to $\left\{e_{i}{ }^{k}, e_{j}^{j}\right\}$ of $\left\{v_{k}, v_{j}\right\}$ in $\mathrm{J}(\mathrm{G})$. Therefore by definition of edge dominating number of graph $\gamma^{1}(G)$, the dominating set
contains atleast two elements. Hence $\gamma^{1}[J(G)] \geq 2 \rightarrow(1)$
Let E by the set of edges in G . Then $\mathrm{E}=\mathrm{VIJ}(\mathrm{G})]$. Suppose $D=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ be the dominating set. Then E-D is also a dominating set. One among these two sets will form a minimal dominating set. So by the definition of edge domination number of graph, we can say edge domination number $\gamma^{1}[J(G)]$ of jump graph is given by $\gamma^{1}[J(G)] \leq \min \{|D|,|E=D|\} \leq\lfloor 1 / 2\rfloor \rightarrow(2)$ from (1) and (2) we get $2 \leq \gamma^{1}[J(G)] \leq\lfloor p / 2\rfloor$.

REFERENCES

[1]. G. Chartrand, H. Hevia, E. B. Jarrett, M. Schultz, subgraph distances in graphs defined by edge transfers Discrete Math.170(1997) 63-79.
[2]. F.Harary, Graph Theory, Addison-Wesley, Reading Mass, 1969.
[3]. T.H.Haynes, S.T.Hedetnieni and P.J.Slater. Fundamentals of Domination in Graphs, Marcel Dekker,Inc, NewYork, 1998.
[4]. O.Ore Theory of Graphs, Amer Math.Soc.Colloq.Publication 38,

Providence(1962).

